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1. INTRODUCTION  
 
         Traditionally, the prediction skill of      

atmospheric models is verified through  small 
amplitude stability analysis. The Lyapunov 
exponent (LE) and singular vector (SV) 
decomposition methods are the two popular 
approaches  (e.g. Lorenz, 1984,  Dalcher and 
Kalnay, 1987; Farrell and Ioannou, 1996;      
Vannitsem and Nicolis, 1997  and others). The   
model stability is defined as sensitivity to small 
errors in initial conditions (the first kind of 
predictability) and measured by an e-folding time 
computed from the leading LE (or SV).  

     

for analyzing predictability skill of atmospheric  
and oceanographic  models  and further 
understanding how the finite amplitude error  
affects low-order  characteristics of  the  model  
prediction skill.  

           

To do so we use the modified self-consistent 
model (Nicolis, 1992) for error propagation and the 
Princeton Oceanographic   Model (POM)  for  
shallow water circulation  in a semi-closed basin.  

       However, finite amplitude errors exist in many 
practical cases for example, in medium-range 
predictions (Vukicevic, 1991; Barkmeijer, 1996 ) 
or “imperfect” models (Palmer, 2001 and 
others).   Thus, the analysis should  be updated.  
Herein, one of possible approaches is the 
probabilistic analysis of   forecast error dynamics 
(e.g., Benzi and Carnavale, 1989, Nicolis 1992; 
Ehrendorfer 1994 ; Moltineli and Corti, 1998 and 
others ).     

        Naturally, the knowledge of the probability 
density function (PDF) of error allows to have  
the full  statistical description of its dynamics. 
However, herein, even one -dimension error 
dynamics needs  to be studied by numerical 
methods (Ehrendorfer 1994 ;  Nicolis 1992). 

          The probabilistic approach can be 
simplified   if we only determine  the time when 
the model   prediction skill is lost, i.e. forecast 
error became larger than a given tolerance 
level )(ε . Then,  the  first passage time  can be 
used as the measure of prediction skill  (Ivanov 
et al., 1994; Ivanov and Margolina, 1999) 

  In the present paper we take such an 
approach  to  illustrate its      usefulness  
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2.  THE FIRST PASSAGE TIME 

 
 We a priori assume that the model dynamics   

can be described as the stochastic process in an 
N-dimensional dynamical system and that the 
characteristics of prediction model skill depending 
on different physical factors are stochastic. For a 
stochastic process, the first passage time is 
defined as the time when the process, starting 
from a given point (position), reaches a 
predetermined level for the first time (Gardiner, 
1985).  It was suggested by   Ivanov et al, 1994,  
Ivanov and  Margolina, 1999 to use  the first  
passage time  as one of measures of the model 
prediction skill.  

There are several reasons to do so. First, the 
first passage   time characterizes both linear and   
nonlinear perspectives of forecast error. In the 
case of small forecast error and   for  non 
stochastically forcing dynamics the mean passage 
time coincides with the e-folding time. Second, the 
statistical moments of the first passage time can 
be easily calculated   by an iterative technique 
developed in Ivanov et al., 1999. Third, in many 
practical applications  such an approach allows to  
get  analytical estimations of the model prediction 
skill. Fourth, this approach is universal for studying 
both   the first and second kinds of predictability.       

Because the first passage time is stochastic 
we can introduce a special function characterizing 
the model prediction skill. This is the probability 
density of prediction (PDP)  
which is the probability that the  value of 
forecasting error   
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  The PDP doesn’t coincide with usual 
probability density function and satisfies  the  
Pontryagin - Kolmogorov   equation (PKE) 
(Pontryagin et al., 1968,  Ivanov  et al., 1994): 

                             (2.1)    0−ξ tLP

where muL ∇−
∂
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nmnu χ, are determined from an evolution law and 
stochastic forcing  of hydrodynamic model (Ivanov 
et al., 1994), n,m=1,…,N. 
     PDP should satisfy the following initial and 
boundary conditions: 
                     ,      )0,0

               0( 0
0 =ttP ,  

(losing the  model skill when forecast error  
reaches S),  

                 or 0=  

(impossibility of error   to be less than some level, 
determined by thermal or another kinds of  noise 
distorted the model dynamics). 
         Note both boundary conditions can  be 
simultaneously  applied on different parts of S.  
         The probability density of prediction can be 
effectively calculated by numerical methods, for 
example,  through the  ensemble prediction 
technique (EPT) or  by the special iteration 
approach developed in Ivanov e t al., 1999.  
        The PDP plays a key role for  the estimation 
of the model prediction skill. Its knowledge allows 
to determine the moment of first passage  time as      
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A low-order characteristics of the prediction skill 
are  the mean and variance of   predictability 
time 1 ττ = and 2

12
2 ττ −= respectively.  

Here, the brackets denote the ensemble average 
over realizations generated by stochastic forcing.     

2σλ =

      The prediction skill for atmosphere model is 
currently verified using the perfect model concept 
with uncertainty appearing only in the initial 
conditions. In our approach, the uncertainty is 
easily taken into account through additional 
averaging of (2.2) with respect to an ensemble of 
initial error. 
 
       3. SELF-CONSISTENT ERROR FORECAST         

MODEL  
         Nicolis (1992) estimated the prediction skill 

of Lorenz (1985) three-component atmospheric 
model through the self-consistent error 
prediction model. This model was obtained 
through projection of full error model onto the 
unstable manifold and replacement of the 
reference circulation  to special stochastic term. 
The model is written by 
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where ξ  is non-dimensional amplitude 
of error, σ and g, are generally time-
independent parameters whose properties 
depend on the underlying model attractor, 

)()()( 2 ttqtt ′−=′ δν )(   ,0 t= νν . 
      We modified the self-consistent model 

because in the real world any dynamics is 
distorted by at least the thermal (molecular)  
noise and  value of initial error  cannot be 
less than the amplitude of the thermal noise 

0ξ
thξ .       

         Let us account this noise  and introduce the 

special scale thξ  = ( ) 2/1
thermI ,  is the 

intensity of  the thermal noise. The contribution 
of 

thermI

thξ  to the predictability time can very small if 

. However, use of thξξ >>0
thξ  leads to a 

correct asymptotic of the predictability time for 
.  The introduced scale also can be 

interpreted as the characteristic scale of 
unresolved sub-grid motions.  

0ξ 0 →

          Although the model (3.1) is simple it 
demonstrates several dynamical regimes of  
error behavior. The non-dimensional parameter   

 is a threshold between different 
dynamical regimes of error evolution.  
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            For 1>λ  , 1<<thξ  and    we 
obtained  the e-folding time  written as                   
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   for the critical point 1=λ       
the dependence for the predictability time   
differs from the e -folding time  

                             

         The mean and the most probable times,  the 
variance of the mean time  are the local 
characteristics of the probabilistic model stability 

in   the perturbation geostrophic stream function 
norm .                2L
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 which demonstrates that reduction of any noise 
intensity increases the predictability time but 
only on the order of  )ln(~ thδ . 

              Lower   the critical point ( )1>λ  the 
predictability time can be determined as 
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         To do so we represent   velocity vector  
through the two scalar potentials  Ψ  and Φ  
(Chu et al., 2001 b) as  

        The effect of nonlinear terms in (3.1) appears  
in the power terms in (3.2)-(3.4), which  reduce 
the predictability time and increasing it variance. 
Detailed results are presented in Chu et al., 
2001a. 

 
        4. PREDICTION SKILL OF POM 
 
         For chosen mean wind stress 

and basin geometry  (a 
rectangular basin with the geometrical sizes of 

, plane bottom   and a 
single  open boundary) we found that for 50-60 
days the flow starting from the state of  rest 
develops in the quasi-stationary inferred 
circulation. We ignored the horizontal diffusion, 
and only the bottom friction   was considered. 
The details of numerical experiments can be 
found   in   Chu  et al., 2001 b.  

22310 −−= smwτ
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         The non-stationary circulation developed 
within a two-month period   was   chosen as the 
reference solution for the study of the POM 
stability. We focused only on the short and  
intermediate  predictions  limited by  2-2.5 
months. The reference solution were distorted  
by stochastic errors of initial conditions, 
stochastic wind and normal velocity along the 
open boundary. 

         We calculated   numerically by EPT and   
analytically from PKE the probability density of 
prediction, the predictability time and its 
variance.   

           In order to determine the prediction skill, 
the POM was reduced  to a simpler stochastic 
dynamical system. The system is a set of 
stochastic ordinary differential equations whose 
parameters are embedded in probabilistic 
properties of the full  model.  

         We have developed   the set of orthogonal 
basis functions (normal modes) for  semi-closed 
seas. That allowed constructing  a  dynamical 
system  for the full POM. 

                  )( Ψku ×∇= + Φ∇                    (4.1) 
    and chosen the following open boundary 

condition for the velocity  potential  
                            0=Φ                               (4.2) 
         Such an approach allows to identify Ψ as 

the geostrophic steam functions and exclude the 
velocity potential from the analysis because ratio 
of mean kinetic energy correspond to potential 
velocity and mean kinetic energy of  irrotational 
motions  was  less  than  0.01. 

         Then, we introduced  a new variables by  
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    where is the normal velocity along the 
open boundary.  

normu

           The transformation (4.3) allowed to 
reformulate the POM stability problem into 
uncertainty  of normal velocity along an  open 
boundary  as the probabilistic stability of a 
dynamical system with multiplicative stochastic 
forcing and to  introduce  the spectral 
representations                         
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   where mΨ is the eigenfunctions of Laplacian 
operator. 

          We have found that the 10- dimensional 
dynamical system for approximated the 
reference solution with the accuracy around 1-2 
%. In comparing with ten normal modes three 
empirical orthogonal functions contents more 
than 0.1% of total kinetic energy of  the 
reference circulation. 

mA

          Then, PDP was calculated for the full 
model, for dynamical systems  of 10th(M=10)and 
100th (M=100) orders by EPT   and only for a 10- 



dimensional dynamical system from  PKE. We 
vary ensemble size between 50 and 10000 
members. 

          We have found that the   forecast error can 
be strongly reduced on the initial growing stage. 
The zero growth (or even negative)  of forecast 
error within 30-day period is obtained if 
Gaussian stochastic noise with the correlation 
radius equaled to 300 km was added into  initial 
conditions  and uncertainty of open boundary 
conditions was small. Reducing the correlation 
radius, i.e. transiting to white noise, we 
reanimated effective growth of initial 
perturbations.  

           The prediction skill of the POM is the most 
sensitive to the systematic errors of   normal 
velocity along the open boundary.  Stochastic 
perturbations of the normal velocity can often  
result  only in  super-slow  growth of the 
forecasting error. 

        Another interest physical result is that  the  
spectrum of   forecast error collapse fast into 
low-frequency domain of wave numbers. The 
physical reason of this phenomena is 
geostrophic adjuction of the reference  
circulation. 

          Three typical scenarios of the predictability 
process    have been   found.  

          Scenario 1.  After a rapid growth of initial 
perturbations a non Gaussian probability density 
function (PDF) for the first passage time had a 
symmetric form with narrow variance ( Figure 1 
a,d,e; ).  Such a scenario is the most 
probable for large forecast error. Herein, the 
ratio of the mean predictability time to the most 
probable (

110−=ε

α ) is around 1. The mean 
predictability time calculated by EPT, Singular 
vectors and from PKE was equal to  27.6, 26.9 
and 25.6  days, respectively. The variance of 
this time written in the same notations isl  11.7, - 
and 10.5 day . The prediction skill of the model 
could be considerably improved through the  
filtration of the fastest growing initial 
perturbations . 

2

        Scenario 2. We illustrate it through the 
analysis of flow forced by stochastic wind  with 
the variance  equaled to 21  ( Fig.2 b,e,h ; 

). Herein, the initial condition was 
weakly perturbed.   

2 /m s2

310−=ε

             PDF had a non- symmetric form with a 
long tail in domain of the long-term prediction,  

3.1~α .  The calculated mean and variance of 
the first-passage time, )( 2δττ , are 1.32  

(0,31); and 1.31 (0.33), respectively. Although 
the mean predictability time is not large, the 
predictability time for single realizations can be 
very large. 

         We called it “extreme prediction”, which   
strongly depends on  properties of   the  model  
attractor and weakly   on  uncertainty of initial 
conditions.  

       Notice that such a scenario is often take place  
for small  values of  tolerance ε , and  indicates 
a  linear evolution of forecast error.        
Improvement of the model prediction skill 
requires some different approaches from  
reduction of  initial  errors.  

         Scenario 3. This scenario is for the case 
that only uncertainty of open boundary condition 
exists. Instead of uniqueness, PDP had several 
maximuma, 2.5≈α   (Fig. 1 c, f, i; ).  
Use of  the  notations in scenario 2,  

310.5 −=ε

)( 2δττ  was equal to 10.6 (84.3)  and 12.1  

(88.3), respectively.  Herein, we have both  
short-term and long-term (extreme) predictions.  

        Notice that the uncertainty of initial conditions 
plays a second role again. The tail of PDF  can 
be directed  along both short and long-term 
predictions.  

        The principle property obtained from the 
scenario is abnormal large value of the variance 
of the predictability time. Numerical calculations  
demonstrate that the scenario 3 can be realized 
for both the small  and large  values of forecast 
errors. 

 
             5. THE EXTREME PREDICTIONS IN   
                    OCEAN 
          
       In order to check existence of extreme 

predictions found numerically in the real world 
we  estimated the prediction skill one of high-
resolution circulation models of the Gulf of 
Mexico. This model was   developed by  Kantha 
and Clayson, 2000.  

         The model was integrated on 15X15 km grid 
and  forced by monthly wind and assimilated 
climatic boundary conditions in Yakatan Channel 
and Strait of Florida.       The model prediction 
skill was estimated using difference between 
trajectories of buoys and of synthetic   particles 
deployed in numerically simulated circulation.  

      We introduced the mean predictability time 
averaged over buoy trajectories and by all 
buoys. Number of terms of such an ensemble   
achieved 1600. 



       Our calculations clearly show  the extreme 
predictions. For example, for   50- km tolerance  
level, and  the most probable time equals 3 
days,   the extreme prediction time can reach  
12-15 days (Fig.2 a, b).  

      The mean predictability time  linearity grows 
with increasing the value of tolerance. For  
values of tolerance  are more than 50 km  we 
had 30-50 day successful predictions of buoy 
trajectories. 
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