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Major Problems in Coastal

i Modeling

= (1) Discretization

= (2) Sigma Error

= (3) High-Order Scheme

= (4) POM Capability

= (5) Velocity Data Assimilation
= (6) Predictability







i Diversity in Discretization

= Finite Differences
« Z — coordinate (MOM, ...)
= 0 - coordinate (POM, COHERENS, etc...)
= S- coordinate (SCRUM, ROMS ...)

« Layered/Isopycnal coordinates (NLOM,
MICOM, ...)

= Finite Elements




iZ-COOrdiante

= Note “staircase” topography representation,
normally with no-slip conditions




Problems of the “Staircase
i Presentation”

= Difficult in simulating coastal flow.

= Example: Japan/East Sea (JES)
Simulation (Kim and Yoon, 1998 JO)



JES Circulation Model Using MOM
(Kim & Yoon, 1998)

= 1/6 deg resolution
= 19 vertical level | Balynotry

(in meter)

= Monthly mean wind
stress (Na et al.
1992)

= Monthly mean heat
flux (Haney type)
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Problem in Simulating
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i Layered/Isopycnal Coordinates

= Pro = Con

= Horizontal mixing is « Itrequires an
exactly along the evident layered
surfaces of constant structure (not
potential density suitable for shelf

circulation

= Avoids
inconsistencies = Some difficulty in
between vertical and modeling
horizontal transport detrainment of ocean

terms mixed layer



Layered/Isopycnal Coordinates
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iSigma Coordinate Models

Sigma coordinate models
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i Sigma Coordinates

| PI‘O O Con
= Realistic Bottom = Horizontal Pressure
Topography gradient Error
=« High Vertical
= Applicable to Shelf Resolution in Shallow
and Estuarine Water (Shelf) and
Circulation Low Resolution in

Deep Water



i Horizontal Diffusion

= he second and fourth terms in the
righthand side are generally ignored.

Diffusion of tracer fields in Sigma coordinates

The horizontal mixing becomes
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(2) Sigma Error



iPressure Gradient Error

Uses a coordinate system which is scaled with the depth
_2-¢
CH+C

Makes use of coordinate surfaces which are located below
the bottom depth in Level models.

g

Aspect ratio Ocean AZmosphere

Aht(:»pograph;.r i _
- o1 <O

e Atmosphere: Hybrid (o, p) models are common.

e Ocean: p and o :surfaces may intersect at large angle.



‘L, Pressure Gradient Error

Pressure gradient in Sigma coordinates

op - opP _o0hoP
Oz lz=const ~ 0z lo=const h 0z dc
(1) (2)
Pressure grad Correction for
along o-surfaces vertical component
in (1)

In case of large slopes:
O(2) = O(1)

(1) +(2) < (1) V(2
Thus, truncation errors may be significant.



Seamount Test Case

FiG. 1. The seamount geometry. The grid is stretched so that the
resoluton is highest at the center (after Beckman and Haidvogel 1993).
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Two Kinds of Sigma Errors
(Mellor et al. 1998, JTECH)

= First Kind (SEFK): = Second Kind (SESF)

Horizontal Density Gradient = Vorticity Error
Oscillatory Decaying
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i Reduction of Sigma Error

= Smoothing topography

= Subtracting horizontally averaged
density field

= Using generalized topography-following
coordinate system (e.g., S-coordinates
in ROMS)

= Using high-order difference schemes




S-Coordinate

Generalized Topography-Following
iCoordinates (Song & Haidvogel, 1994)

s-coordinate models

—AN—
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Uses a general vertical coordinate scaled with the depth
using a nonlinear transformation. More flexible than tradi-
tional sigma coordintes (e.g., allows for high resolution in
bottom and surface boundary layers).
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rror AnaIyS|s (S-Coordinate)

CONTOUR FROM -.0000275 TO .0001075 BY .000005

c). WIXI =

20,DAY

30.0)

CONTOUR FROM -.000003625 TO .000001125 BY .00000025

i, v, w, and in kg m~* for p.

CONTOUR FROM -.00032 TO .00002 BY .00002
F1G. 1. Cross sections through the center of the seamount: (a) the alongshore velocity; (b) the cross-shore
velocity; (c) the vertical velocity; (d) the density change relative to the initial conditions. Units are in m s~ for



iError Evolution (S-coordinate)

= Radius of Seamount: r, = 40 km, r, =80 km

‘no“ (b) Mean Velocity Ervor

_ MVt
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MVi2
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i High-Order Schemes

Ordinary Five-Point Sixth-Order Scheme (Chu and
Fan, 1997 JPO)

Three-Point Sixth-Order Combined Compact
Difference (CCD) Scheme (Chu and Fan, 1998 JCP)

Three-Point Sixth-Order Nonuniform CCD Scheme
(Chu and Fan, 1999, JCP)

Three-Point Sixth-Order Staggered CCD Scheme (Chu
and Fan, 2000, Math. & Comp. Modeling)

Accuracy Progressive Sixth-Order Scheme (Chu and
Fan, 2001, JTECH)

Finite Volume Model (Chu and Fan, 2002)



gl
ifference Schemes



Why do we need high-order
i schemes?

= (1) Most ocean circulation models are
hydrostatic.

= (2) If keeping the same physics, the grid
space (Ax) should be larger than certain
criterion such that the aspect ratio

d =H/ Ax << 1



A Hidden Problem in Second
iOrder Central Difference Scheme

= Local Hermitian
Polynomials

D:';conﬁnuity of the first derivatives of the Lagrangian
Polynomials at each grid point.

& — Gir1 — i1
o 2A T |

(}5’-’ . ¢i+1 - 2(1{)1 53 Qsi—l I
F Az?

= Both @' and ®" are not
continuous at each grid
point. This may cause
some problems.




iThree-Point Sixth-Order Scheme




Three-Point Sixth Order CCD

i Schemes

s Existence of Global Hermitian
Polynomials

= First Derivative Continuous

o , , Sf
H!(x;) = H_Gy=H,(x;) = Sc )

s Second Derivative Continuous

! I /7 82 .
f[,' (xi) = sz_l(-‘[g):f[l,-_i_!(.‘(,'): (_];>

dXx~



Error Reduction Using CCD
Schemes (Seamount)
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(a) Peak error velocity.

Figure 11. Peak error velocity propagation in 20 days for the SCCD, second-order,
fourth-order, sixth-order ordinary, and sixth-order compact schemes (all staggered).
The formulas for the compact schemes compared are listed in the Appendix.



Rotating Cone for Testing
iVarious Schemes




Accuracy Comparison
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!'_ (4) POM Capability

Chu et al 2001, JTECH



Sea Monsoon Experiment (SCSMEX) Data

| Evaluation of POM Using the South China

= IOP (April — June 1998)

DaaSat: 172 DCP Data Station: 33923

o.'n:tomu}

Latitude (N)

atot-18-09-05-f04



T-S Diagram from SCSMEX
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iTwo Step Initialization of POM

= (1) Spin-up
= Initial conditions: annual mean (T,S) + zero velocity

=« Climatological annual mean winds + Restoring type
thermohaline flux (2 years)

= (2) Climatological Forcing
=« Monthly mean winds + thermohaline fluxes from COADS (3
years) to 1 April

= (3) The final state of the previous step is the initial
state of the following step
= (4) Synoptic Forcing
= NCEP Winds and Fluxes: April 1 to June 30, 1998 (3 Months)



iTwo Types of Model Integration

« Without Data Assimilation
»« Hindcast Period: April-June 1998 (3 Months)

= With Daily SCSMEX-CTD Data Assimilation

= Hindcast Period:
= May 1998: No data Assimilation in May
= June 1998: No data Assimilation in June



iSkiII-Score

= Model-Data Difference

AY(Z:i,Y5i 2, T) = U (T, U5, 2,8) — Uo(2s, Y5, 2, 1),

= Mean Square Error

MSE(z,t) = Z > %I- [AY (2,95, 2, 1))

= Skill-Score (SS)

MSE(m, o)
MSE(e,0) ’

= SS > 0, Model has capability

SS=1-



Scatter Diagrams Between Model and
iObservation (MD1)




Histograms of (Model — Obs) for MD1
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RMS Error for MD1 (No Assimilation)
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Skill-Score for MD1 (No Assimilation)

Temperature (°C) , Salinity (psu)
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Scatter Diagrams for MD2 (with
Assimilation)
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RMS Error for MD2 (wit
Assimilation)
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Bias for MD2 (with
Assimilation)
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i Comments

= (1) POM-SCS has synoptic flux forcing.

= (2) Without data assimilation, it has
capability to predict temperature, but
not salinity.

= (3) With data assimilation, it has
capability to predict salinity.



(ﬂ Velocity Data Assimilation

(Chu, et al 2002)



$F.

Can we get the velocity
field from sparse and
noisy data?




Reconstructed Currents from LATEX
Drifting Buoy Data (Dec 15, 1993 — Mar

15, 1994)
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i Flow Decomposition

= 2 D Flow (Helmholtz)
Uy =TI X VHA1+VHA3

= 3D Flow (Toroidal & Poloidal): Very
popular in astrophysics

u=rx VA; + 1Ay +VA;



iBD Incompressible Flow

= When Veu =0
= We have

u=Vx(¥)+VxVx((rd).



i Flow Decomposition

ov 9% ov  9%®
%= —+ v=—

3y " 020z’ oz | 9y

» VY =-(0 (s relative
vorticity
m 2D = -w



*Boundary Conditions




iBasis Functions

Uz, 9.2,1)= Z ar(z,t°)¥k(z, vy, 2, K°),

0P t°)
(1? y’z me(z t m(:z:,y,z),




i Flow Reconstruction

0V (z,y,2,K°) 0P (z,y, 2)
UkyM = ax(z,t°) bm(2,t°)
= OV (z,y,2,K°) < 0P (z,y, 2)
VM = —Zak(z t ) k ax - me(z t ) may’y:
k=1 m=1



i Several Comments

= Reconstruction is a useful tool for processing
real-time velocity data with short duration

and limited-area sampling.
= The scheme can handle highly noisy data.
= The scheme is model independent.

= The scheme can be used for velocity data
assimilation.
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6. Predictability




Model Valid Predictability

!‘ Period (VPP)




i References

= Chu, P.C., L.M. Ivanov, T. M. Margolina, and O.V.
Melnichenko, On probabilistic stability of an atmospheric

model to various amplitude perturbations. Journal of the
Atmospheric Sciences, 59, 2860-2873.

s Chu, P.C., L.M. Ivanov, and C.W. Fan, 2002: Backward
Fokke-Planck equation for determining model valid
prediction period. Journal of Geophysical Research, in
press.

s Chu, P.C., L.M. Ivanov, L.H. Kantha, O.V. Melnichenko,
and Y.A. Poberezhny, 2002: Power law decay in model
predictability skill. Geophysical Research Letters, in press.



i Question

= How long is an ocean (or atmospheric)
model valid once being integrated from
its initial state?

= Or what is the model valid prediction
period (VPP)?



(Dynamic System with Stochastic Forcing)

| Atmospheric & Oceanic Model

« dX/dt=FfXt) +qt) X

= Initial Condition: X{t,) = X;

= Stochastic Forcing:
m <q(t)> =(
: <q(t)q(t)> = g=5(t-t")



i Prediction Model

m Y --- Predictionof X

= Model: dVdt= Ay, t)

= Initial Condition: Y{%;) = ¥,



iModeI Error

L Z=X-Y



i Definition of VPP

= VPP is defined as the time period when
the prediction error first exceeds a pre-
determined criterion (i.e., the tolerance
level ¢€).







Predictability

= Conventional = Using VPP

= Error Growth
= One Scalar

« Z(H) =7
= For operational model,

the vector Z may have
many components



iUncertain Initial Error

= [he prediction is meaningful only if

Var(Z) <e? < ellipsoid S.(t)

= VPP time period (t-1t,)

= Such that Z € S.(t)



Conditional Probability Density

i Function

= Initial Error: 4

= £ -1, Random Variable

= Conditional PDF of @ —t;) with given Z

= P/t-%)|ZJ

= Backward Fokker-Planck Equation



iBackward Fokker-Planck Equation

1 2, 2 d°P
t —— =0
[l'( Z, )aZO 2q 0 aZOaZO




i Moments

rl(zo)=TP(to,z0,r-ro)(r—to)dt

r 2
T.(2,) = _[P(to,zo,t-to)(t—to) dt
Io



iMean & Variance of VPP

= Mean VPP: taul

= Variance of VPP:

= tau2 — taul?



Linear Equations for Mean and
iVariance of VPP

= For an autonomous dynamical system

. d X/ dt=f(X)+q(t) X

= Integration of [Backward F-P Eq. *

» t—t,), & —1t,)?] from t, to infinity.

f(Zo)aT’.;.qzzg aZTl _
%z, 2 dz,97,

2.2 2
fz) Q%248 % 9T _ 5
oz, 2 ozyoz,




Example 1: One Dimensional
Model (Nicolis 1992)

= 1D Dynamical System

L _0-gg)rE,  0sE<es

(W) =0, (V) =¢*8(t-1").

=064, g=03, g>=02.



iMean and Variance of VPP

drt ‘I 60 dT
cE — =]
( 50 géO go 2 déoz

22 52
q°&, dT,

o — - =-27T
( ‘Eo g‘;:o déo 2 d§02 !
7,=0, 17,=0 for &=¢
_q:_r.Lzo i{-‘z—_—.o fOf 60: 50158






Dependence of taul & tau2 on
Initial Condition Error ( &y/e )




i Small Tolerance Error (¢~ 0)

_ 26 20 -
T ] -38 = 3 B 3 + - '
Lith T 6 s €) o-qZ/Z[ [50] 2"“12[ ‘50) 26_"26”& -

= (1) Lyapunov Exponent: ( 7972 )
= (2) Stochastic Forcing (g 0):

= Multiplicative White Noise

= Reducing the Lyapunov exponent
(Stabilizing the dynamical system)



Dependence of Mean VPP on
initial error and tolerance level

+




Dependence of Variance of VPP
on initial error and tolerance level




+

Example 2: Multi-Dimensional
Models: Power Decay Law in VPP




iModeI Error

L Z=X-Y



i Error Mean and Variance

Error Mean L, = (z)

Error Variance 2 = <(z ~(2))(e- <z>)>



i Exponential Error Growth

ol wi
Lice™, L,xe™,

Classical Linear Theory

No Long-Term Predictability



i Power Law

Llc’cta: L2°ctﬁa

P(to,zg,&,t —ty) ~t7 for large t.

Long-Term Predictability May Occur



Gulf of Mexico
i Nowcast/Forecast System

= University of Colorado Version of POM
= 1/12° Resolution

= Real-Time SSH Data (TOPEX, ESA ERS-
1/2) Assimilated

= Real Time SST Data (MCSST, NOAA
AVHRR) Assimilated

= Six Months Four-Times Daily Data From
July 9, 1998 for Verification




Model Generated Velocity Vectors

at 50 m on 00

00 July 9, 1998
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(Observational) Drifter Data at
iSO m on 00:00 July 9, 1998




Reconstructed Drift Data at 50 m on

200cm/s

et al. 2002
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Statistical Characteristics of VPP for zero
initial error and 55 km tolerance level
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Scaling behavior of the
Error variance (L,) growth
for initial error levels:
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Probability Density Function of VPP
calculated with different tolerance levels

0.05

I
— &=27.5km,

Non-Gaussian distribution ..l /|-
0.005 /i// o @
with long tail toward large  ° B
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i Conclusions

= (1) VPP is an effective prediction skill
measure (scalar).

= (2) Backward Fokker-Planck equation is
a useful tool for predictability study.

= (3) Stochastic-Dynamic Modeling
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