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Coastal Model 



Major Problems in Coastal 
Modeling

(1) Discretization
(2) Sigma Error
(3) High-Order  Scheme
(4) POM Capability
(5) Velocity Data Assimilation 
(6) Predictability



(1) Discretization 



Diversity in Discretization

Finite Differences
Z – coordinate (MOM, …)
σ - coordinate  (POM, COHERENS, etc…)
s- coordinate (SCRUM, ROMS …)
Layered/Isopycnal coordinates (NLOM, 
MICOM, …)

Finite Elements



Z-Coordiante

Note “staircase” topography representation, 
normally with no-slip conditions



Problems of the “Staircase 
Presentation”

Difficult in simulating coastal flow.

Example: Japan/East Sea (JES) 
Simulation (Kim and Yoon, 1998 JO)



JES Circulation Model Using MOM
(Kim & Yoon, 1998)

1/6 deg resolution
19 vertical level
Monthly mean wind 
stress (Na et al. 
1992)
Monthly mean heat 
flux (Haney type)



Problem in Simulating 
Coastal Currents 

Model                Observation      



Layered/Isopycnal Coordinates
Pro

Horizontal mixing is 
exactly along the 
surfaces of constant 
potential density

Avoids 
inconsistencies 
between vertical and 
horizontal transport 
terms

Con
It requires an 
evident layered 
structure (not 
suitable for shelf 
circulation

Some difficulty in 
modeling  
detrainment of ocean 
mixed layer 



Layered/Isopycnal Coordinates

(Metzger and
Hurlburt 1996, JGR)
1/8o, 6 layer with 
realistic bottom 
topography
Not applicable to 
simulating shelf 
circulation



Sigma Coordinate Models



Sigma Coordinates
Pro

Realistic Bottom 
Topography

Applicable to Shelf 
and Estuarine 
Circulation

Con
Horizontal Pressure 
gradient Error
High Vertical 
Resolution in Shallow 
Water (Shelf) and 
Low Resolution in 
Deep Water



Horizontal Diffusion

The second and fourth terms in the 
righthand side are generally ignored.



(2) Sigma Error



Pressure Gradient Error



Pressure Gradient Error



Seamount Test Case



Two Kinds of  Sigma Errors
(Mellor et al. 1998, JTECH)

First Kind (SEFK):
Horizontal Density Gradient
Oscillatory Decaying

Second Kind (SESF)
Vorticity Error



Reduction of Sigma Error

Smoothing topography
Subtracting horizontally averaged 
density field
Using generalized topography-following 
coordinate system (e.g., S-coordinates 
in ROMS)
Using high-order difference schemes 



S-Coordinate
Generalized Topography-Following 
Coordinates (Song & Haidvogel, 1994)



Error Analysis (S-Coordinate)



Error Evolution (S-coordinate)

Radius of Seamount:  r1 = 40 km, r2 =80 km



High-Order Schemes
Ordinary Five-Point Sixth-Order Scheme (Chu and 
Fan, 1997 JPO)
Three-Point Sixth-Order Combined Compact  
Difference (CCD) Scheme (Chu and Fan, 1998 JCP)
Three-Point Sixth-Order Nonuniform CCD Scheme 
(Chu and Fan, 1999, JCP)
Three-Point Sixth-Order Staggered CCD Scheme (Chu 
and Fan, 2000, Math. & Comp. Modeling)
Accuracy Progressive Sixth-Order Scheme (Chu and 
Fan, 2001, JTECH) 
Finite Volume Model (Chu and Fan, 2002)



(3) Difference Schemes



Why do we need high-order 
schemes?

(1) Most ocean circulation models are 
hydrostatic. 

(2) If keeping the same physics, the grid 
space (∆x) should be larger  than certain 
criterion such that the aspect ratio

δ = H/ ∆x << 1



A Hidden Problem in Second 
Order Central Difference Scheme

Both Φ’ and Φ’’ are not 
continuous at each grid 
point. This may cause 
some problems.

Local Hermitian 
Polynomials



Three-Point Sixth-Order Scheme



Three-Point Sixth Order CCD 
Schemes

Existence of Global Hermitian 
Polynomials
First Derivative Continuous

Second Derivative Continuous



Error Reduction Using CCD 
Schemes  (Seamount)



Rotating Cone for Testing 
Various Schemes



Accuracy Comparison



(4) POM Capability

Chu et al 2001, JTECH



Evaluation of POM Using the South China 
Sea Monsoon Experiment (SCSMEX) Data

IOP (April – June 1998)



T-S Diagram from SCSMEX 
Observations



Two Step Initialization of POM
(1) Spin-up

Initial conditions: annual mean (T,S) + zero velocity
Climatological annual mean winds + Restoring type 
thermohaline flux (2 years)

(2) Climatological Forcing
Monthly mean winds + thermohaline fluxes from COADS  (3 
years) to 1 April 

(3) The final state of the previous step is the initial 
state of the following step
(4) Synoptic Forcing

NCEP Winds and Fluxes: April 1 to June 30, 1998 (3 Months)



Two Types of Model Integration

(1) MD1:  
Without Data Assimilation 
Hindcast Period: April-June 1998  (3 Months)

(2) MD2: 
With Daily SCSMEX-CTD Data Assimilation 
Hindcast Period: 

May  1998:  No data Assimilation in May 
June 1998: No data Assimilation in June 



Skill-Score
Model-Data Difference

Mean Square Error

Skill-Score (SS)

SS > 0,  Model has capability



Scatter Diagrams Between Model and 
Observation (MD1)



Histograms of (Model – Obs) for MD1



RMS Error for MD1 (No Assimilation)



Bias for MD1 (No Assimilation)



Skill-Score for MD1 (No Assimilation)



Scatter Diagrams for MD2 (with 
Assimilation)



RMS Error for MD2 (with 
Assimilation)



Bias for MD2 (with 
Assimilation)



Skill-Score for MD2 (with 
Assimilation)



Comments

(1) POM-SCS has synoptic flux forcing.
(2) Without data assimilation, it  has 
capability to predict temperature, but 
not salinity.
(3) With data assimilation,  it has 
capability to predict salinity.



(5) Velocity Data Assimilation

(Chu, et al 2002)



Can we get the  velocity 
field from sparse and  
noisy data?



Reconstructed Currents from LATEX 
Drifting Buoy Data (Dec 15, 1993 – Mar 

15, 1994)



Flow Decomposition

2 D Flow  (Helmholtz)

3D Flow (Toroidal & Poloidal): Very 
popular in astrophysics



3D Incompressible Flow 

When       ± •u = 0
We have 



Flow Decomposition

±2 Ψ = - ζ,     ζ is relative 
vorticity
±2Φ = - w



Boundary Conditions



Basis Functions



Flow Reconstruction



Several Comments
Reconstruction is a useful tool for processing 
real-time velocity data with short duration 
and  limited-area sampling.
The scheme can handle highly noisy data.
The scheme is model independent.
The scheme can be used for velocity data 
assimilation.



6. Predictability



Model Valid Predictability 
Period (VPP)
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Question

How long is an ocean (or atmospheric) 
model valid once being integrated from 
its initial state? 

Or what is the model valid prediction 
period (VPP)? 



Atmospheric & Oceanic Model 
(Dynamic System with Stochastic Forcing)

d X/ dt = f(X, t) + q(t) X

Initial Condition:  X(t0) = X0

Stochastic Forcing:   
<q(t)> = 0
<q(t)q(t’)> = q2δ(t-t’)



Prediction Model

Y   --- Prediction of X

Model: dY/dt = h(y, t)

Initial Condition:  Y(t0) = Y0



Model Error

Z = X – Y

Initial:     Z0 = X0 - Y0



Definition of VPP

VPP is defined as the time period when 
the prediction error first exceeds a pre-
determined criterion (i.e., the tolerance 
level ε). 



VPP



Predictability
Using VPP

One Scalar

Conventional

Error   Growth

Z (t) = ?

For operational model, 
the vector Z may have 
many components



Uncertain Initial Error 

The prediction is meaningful only if

VPP      time period   (t – t0) 

Such that   



Conditional  Probability Density 
Function

Initial Error:   Z0 

(t – t0)   Random Variable

Conditional  PDF of  (t – t0) with given Z0 

P[(t – t0) |Z0]

Backward Fokker-Planck Equation



Backward Fokker-Planck Equation



Moments



Mean & Variance of VPP

Mean VPP:   tau1

Variance of VPP:       

tau2 – tau12



Linear Equations for Mean and 
Variance of VPP

For an autonomous dynamical system
d X/ dt = f(X) + q(t) X

Integration of  [Backward F-P Eq. *

(t – t0), (t – t0)2] from t0 to infinity.



Example 1: One Dimensional 
Model (Nicolis 1992)

1D Dynamical System



Mean and Variance of VPP



Analytical Solutions 



Dependence of tau1 & tau2 on 
Initial Condition Error (           )



Small Tolerance Error (       )

(1) Lyapunov Exponent: (                )
(2) Stochastic Forcing (q  0):

Multiplicative White Noise
Reducing the Lyapunov exponent 
(Stabilizing the dynamical system)



Dependence  of Mean VPP on 
initial error and tolerance level



Dependence  of Variance of VPP 
on initial error and tolerance level



Example 2:  Multi-Dimensional 
Models: Power Decay Law in VPP



Model Error

Z = X – Y

Initial:     Z0 = X0 - Y0



Error Mean and Variance

Error Mean 

Error Variance



Exponential Error Growth

Classical Linear  Theory

No Long-Term Predictability



Power Law

Long-Term Predictability May Occur



Gulf of Mexico 
Nowcast/Forecast System

University of Colorado Version of POM
1/12o Resolution
Real-Time SSH Data (TOPEX, ESA ERS-
1/2) Assimilated
Real Time SST Data (MCSST, NOAA 
AVHRR) Assimilated
Six Months Four-Times Daily Data From 
July 9, 1998 for Verification



Model Generated Velocity Vectors 
at 50 m on 00:00 July 9, 1998



(Observational) Drifter  Data at 
50 m on 00:00 July 9, 1998



Reconstructed Drift Data at 50 m on 
00:00 July 9, 1998 (Chu et al. 2002 
a, b, JTECH)



Statistical Characteristics of VPP for zero 
initial error and 55 km tolerance level 
(Non-Gaussion)



Scaling behavior of the 

mean error (L1) growth

for initial error levels:

(a) 0

(b) 2.2 km

(c) 22 km 



Scaling behavior of the 

Error variance (L2) growth

for initial error levels:

(a) 0

(b) 2.2 km

(c) 22 km 



Probability Density Function of VPP 
calculated with different tolerance levels

Non-Gaussian distribution

with long tail toward large

values of VPP (Long-term

Predictability)



Conclusions

(1) VPP is  an effective prediction skill 
measure (scalar). 

(2) Backward Fokker-Planck equation is 
a useful tool for predictability study.

(3) Stochastic-Dynamic Modeling
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