
1 Ordinary Differential Equations

The basic problem in ordinary differential equations (ODEs) is the initial value
problem (IVP). The IVP consists of two components, the differential equation
and the initial value, such as

du

dt
= f

(
u(t)

)
(1)

u(0) = u0 . (2)

Separating and integrating (1) results in,

t+∆t∫
t

du =

t+∆t∫
t

f
(
u(s)

)
ds (3)

Completing the integral on the left side of (3) results in

u(t + ∆t)− u(t) =

t+∆t∫
t

f
(
u(s)

)
ds (4)

or on rearranging (4)

u(t + ∆t) = u(t) +

t+∆t∫
t

f
(
u(s)

)
ds . (5)

Equation (5) provides a rule for the advancement u from time t to time t + ∆t
in terms of the integral of f over that interval. The remaining step is to choose
a particular method of numerical quadrature. We will consider three types of
quadrature:

Forward Euler – approximate the value of the function over the interval by
the current value.

t+∆t∫
t

f
(
u(s)

)
ds ≈ f

(
u(t)

)
∆t (6)

substituting (6) into (5) produces the explicit forward Euler time integra-
tion method:

u(t + ∆t) = u(t) + f
(
u(t)

)
∆t (7)

Backward Euler – approximate the value of the function over the interval by
the future value.

t+∆t∫
t

f
(
u(s)

)
ds ≈ f

(
u(t + ∆t)

)
∆t (8)
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substituting (8) into (5) produces the implicit backward Euler time inte-
gration method:

u(t + ∆t) = u(t) + f
(
u(t + ∆t)

)
∆t (9)

Trapezoid – approximate the value of the function over the interval by the
average of the current and future value.

t+∆t∫
t

f
(
u(s)

)
ds ≈ 1

2

[
f
(
u(t + ∆t)

)
+ f

(
u(t)

)]
∆t (10)

substituting (10) into (5) produces the mixed explicit/implicit Trapezoidal
time integration method:

u(t + ∆t) = u(t) + 1
2

[
f
(
u(t + ∆t)

)
+ f

(
u(t)

)]
∆t (11)

For the next section, the simplification f
(
u(t)

)
= −(α + iβ)u(t) will be made.

A common shorthand notation is to write u(t) as Un, where tn = n∆t. Then
u(t + ∆t) is written as Un+1.

1.1 Numerical Solution of ODEs

Forward Euler Method is simplest explicit method. The initial state U0 is
advanced by the rule Un+1 = Un + ∆tF (Un). For the special case of a
linear functional F (U) = −(α + iβ)U , the integration rule becomes

Un+1 = Un + ∆tF (Un)
= Un −∆t(α + iβ)Un

= Un (1−∆t(α + iβ)) (12)

So what does (12) mean? The initial value for U is represented by U0.
The subsequent iterates represent a march forward in time:

u(∆t) = U1 = U0 (1−∆t(α + iβ))
u(2∆t) = U2 = U1 (1−∆t(α + iβ))

= U0 (1−∆t(α + iβ))2

u(3∆t) = U3 = U2 (1−∆t(α + iβ))

= U1 (1−∆t(α + iβ))2

= U0 (1−∆t(α + iβ))3

...
u(N∆t) = UN = UN−1 (1−∆t(α + iβ))

= U0 (1−∆t(α + iβ))N
.
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How should this be coded! Using a single variable, U, the above sequence
can be implemented with a simple for loop.

% define initial condition
U = Uinitial
for k=1:N

U = U * ( 1 - dt*(a + i b))
end

Notice that the variable U is overwritten each time step. This does not
pose a problem since it is overwritten only after it is used. Convince
yourself that this works!

Backward Euler Method is simplest implicit method. The initial state U0

is advanced by the rule Un+1 = Un + ∆tF (Un+1). Notice that the new
time level is on both sides of the equation. To write this as a numerical
scheme, we need the new level (n+1) only on one side of the equation. For
the special case of a linear functional F (U) = −(α+ iβ)U , this separation
is easy. The integration rule becomes

Un+1 = Un + ∆tF (Un+1)
= Un −∆t(α + iβ)Un+1

Un+1 (1 + ∆t(α + iβ)) = Un

Un+1 =
1

(1 + ∆t(α + iβ))
Un . (13)

The scheme (13) is very similar to (12). The primary difference is the
particular multiplication factor 1

(1−∆t(α+iβ)) . Just as before, the iterates
represent a march forward in time:

u(∆t) = U1 = U0

(
1

1 + ∆t(α + iβ)

)
u(2∆t) = U2 = U1

(
1

1 + ∆t(α + iβ)

)
= U0

(
1

1 + ∆t(α + iβ)

)2

u(3∆t) = U3 = U2

(
1

1 + ∆t(α + iβ)

)
= U1

(
1

1 + ∆t(α + iβ)

)2

= U0

(
1

1 + ∆t(α + iβ)

)3

...
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u(N∆t) = UN = UN−1 1
1 + ∆t(α + iβ)

= U0

(
1

1 + ∆t(α + iβ)

)N

.

This sequence can be implemented again with a simple for loop.

U = Uinitial
for k=1:N

U = U/( 1 + dt*(a + i b) )
end

This works in the same way as the code fragment for the Euler method.

Trapezoidal Method is simplest mixed explicit/implicit method. The initial
state U0 is advanced by the rule Un+1 = Un + ∆t

2

(
F (Un) + F (Un+1)

)
.

Notice that the right hand side is the average of F at the two time levels.
To write this as a numerical scheme, we need separate the two time levels.
Again, for the special case of a linear functional F (U) = −(α + iβ)U , this
separation is easy. The integration rule becomes

Un+1 = Un +
∆t

2
(
F (Un) + F (Un+1)

)
= Un − ∆t

2
(α + iβ)(Un + Un+1)

Un+1

(
1 +

∆t

2
(α + iβ)

)
= Un

(
1− ∆t

2
(α + iβ)

)
Un+1 =

1− ∆t
2 (α + iβ)

1 + ∆t
2 (α + iβ)

Un . (14)

The scheme (14) is a straight forward combination of (12) and (13).
Marching (14) forward in time produces:

u(∆t) = U1 = U0

(
1− ∆t

2 (α + iβ)
1 + ∆t

2 (α + iβ)

)

u(2∆t) = U2 = U1

(
1− ∆t

2 (α + iβ)
1 + ∆t

2 (α + iβ)

)

= U0

(
1− ∆t

2 (α + iβ)
1 + ∆t

2 (α + iβ)

)2

4



u(3∆t) = U3 = U2

(
1− ∆t

2 (α + iβ)
1 + ∆t

2 (α + iβ)

)

= U1

(
1− ∆t

2 (α + iβ)
1 + ∆t

2 (α + iβ)

)2

= U0

(
1− ∆t

2 (α + iβ)
1 + ∆t

2 (α + iβ)

)3

. . .

u(N∆t) = UN = UN−1

(
1− ∆t

2 (α + iβ)
1 + ∆t

2 (α + iβ)

)

= U0

(
1− ∆t

2 (α + iβ)
1 + ∆t

2 (α + iβ)

)N

.

Just as above, this sequence can be implemented with a simple for loop.

U = Uinitial
for k=1:N

U = U*( 1 - 0.5*dt*(a + i b) )/( 1 + 0.5*dt*(a + i b) )
end

Convince yourself that this works!

Notice that the code for all three schemes are very similar and only take a few
lines. Notice also that no vectors have been used here to compute the solution.
All variables are scalars. We will see that for purposes of output we will need a
storage vector, but this is separate from the solver.

1.2 Form of the function F

A simple linear form for the function F has been assumed in the above examples,
but this is commonly not the case. Of greatest interest is the case where F
contains a spatial derivative. For example if F (u) = −c∂u

∂x , the ODE becomes
the partial differential equation ∂u

∂t + c∂u
∂x = 0. This is the uni-directional wave

equation. In this case the variable u depends on both x and t. The discrete
form of u then becomes u(n∆t, i∆x) = Un

i . If the spatial derivative is expressed
by the one way difference ∂u

∂x ≈
Un

i −Un
i−1

∆x , for i = 1, ...,K, the implicit backward
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Euler implementation of the wave equation is

Un+1
i = Un

i + ∆tF (Un+1)

= Un
i − c

∆t

∆x
(Un+1

i − Un+1
i−1 ) (15)

Un+1
i + c

∆t

∆x
(Un+1

i − Un+1
i−1 ) = Un

i (16)

Un+1
i (1 + c

∆t

∆x
)− Un+1

i−1 = Un
i (17)

This last equation is a matrix problem of the form

MUn+1 = Un , (18)

where the vectors Un+1 and Un are of the form

Un+1 =



Un+1
1

Un+1
2

Un+1
3
...

Un+1
K−1

Un+1
K


(19)

and the K x K matrix M, depending on boundary conditions, will looks some-
thing like: 

1 + Ω 0 0 0 · · · 0 0
−Ω 1 + Ω 0 0 · · · 0 0
0 −Ω 1 + Ω 0 · · · 0 0
... · · · · · · · · ·

. . . · · ·
...

0 0 0 0 · · · 1 + Ω 0
0 0 0 0 · · · −Ω 1 + Ω


(20)

where Ω = c ∆t
∆x . To advance (18) it is necessary to invert M such that

Un+1 = M−1Un . (21)

The inversion of M for large systems is computationally expensive. Recall how
simple the Backward Euler method (13) was for the linear scalar form of F .
This is why we willingly use the method to solve an ODE, but think twice
before applying it to a PDE.

1.3 Three Level Schemes

The trapezoidal method is unconditionally stable, and has the lowest truncation
error of the three schemes presented. Its weakness is that it is implicit. This
can be a problem when F is other than the linear scalar function used above.
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Information from earlier time levels can be incorporated into the integration
formula. This increases storage, but avoids performing more than one evaluation
of F per time step. Of these three level schemes, the leapfrog method is the
best explicit scheme for oscillation and wave equation problems. The leapfrog
scheme is stable, second order, and requires only one function evaluation per
time step. Its only drawback is the existence of an undamped computational
mode, which slowly amplifies during simulations of nonlinear problems. For
linear problems this is not an issue.

The leapfrog scheme is Un+1 = Un−1 + 2∆tF (Un). This scheme uses three
time levels. Implementing the leapfrog scheme requires two initial levels; U0

and U1. The first leapfrog iterate U2 = U0 + 2∆tF (U1) actually takes place
at the second time level (t = 2∆t). To prime the leapfrog method, it is neces-
sary to advance the initial scheme one time step using another method such as
trapezoidal. The leapfrog + trapezoidal sequence is then

u(∆t) = U1 = U0 +
∆t

2
(
F (U0) + F (U1)

)
Trapezoidal

u(2∆t) = U2 = U0 + 2∆tF (U1) Leapfrog
u(3∆t) = U3 = U1 + 2∆tF (U2) Leapfrog
u(4∆t) = U4 = U2 + 2∆tF (U3) Leapfrog

...
u(N∆t) = UN = UN−2 + 2∆tF (UN−1) Leapfrog

The leapfrog sequence can be implemented with a for loop and the three variables
Unew, U, and Uold. The code will look roughly like

% define initial condition
Uold = Uinitial
% single step of trapezoidal to prime Leapfrog sequence
U = Uold*( 1 - 0.5*dt*(a + i b) )/( 1 + 0.5*dt*(a + i b) )
% loop through Leapfrog
for k=2:N

Unew = Uold - 2*dt*(a + i b)*U
% shift variables in time for next loop

Uold = U
U = Unew

end

This code fragment takes the initial condition Uinitial, moves it into Uold, and
then takes a single step of Trapezoidal. The output from the Trapezoidal step
is used as the middle time level in the leapfrog loop. The old time level is in
the Uold variable. The new time level Unew results as output from the leapfrog
step. The last step is to shift the variables back in time for the next loop. The
current middle level variable becomes the old variable Uold = U, and the new
middle time level variable is the current new variable U = Unew.

7



1.4 Time Step Selection

The selection of the time step ∆t depend on satisfying two factors. The first is
the stability constraint for the method. For the forward Euler method applied
to the damping problem, i.e. du

dt = −αu, the stability criteria is α∆tstability < 2.
A good general rule is to limit the actual time step ∆t ≤ 1

2∆tstability. If we
applied the /emphbackward Euler method to the damping problem, there is no
stability criteria to work from. In that case recall that the truncation error for
the backward Euler method is first order. This means that the error proportional
to some constant times ∆t. So to obtain three digits of accuracy, a reasonable
time step restriction is ∆t < 0.001.
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